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Summary

A wind tunnel experiment was conducted to de-

termine the effects of chine-like forebody strakes

and the Mach number on the longitudinal and
lateral-directional characteristics of a generalized

fighter configuration with a 55 ° cropped delta wing.

The testing of the model was performed in the

7- by 10-Foot Transonic Tunnel at the David Taylor

Research Center (DTRC). The model six-component
forces and moments, wing upper surface static pres-

sure distributions, and off-surface flow-field patterns
were obtained at free-stream Mach numbers of 0.40

to 1.10 and Reynolds numbers based on the win_
mean aerodynamic chord of 1.60 x 106 to 2.59 × 10 U.

The test matrix included angles of attack from 0°

to a maximum of 28°; angles of sideslip of 0°, +5 °,

and -5°; and wing leading-edge flap deflection an-

gles of 0° and 30 °. The interaction of the strake
vortex with the wing flow field stabilized the wing

vortex, increased the lift, reduced the drag, and pro-

moted unstable pitching-moment increments at sub-

sonic and transonic speeds. The strake vortex flow

provided a three-dimensional relief effect on the wing
which prevented the development of a strong rear

shock wave, delayed the onset of wing vortex break-

down, and eliminated the model buffeting associ-
ated with vortex shock interaction at the transonic

speeds. The strake effects on the longitudinal char-
acteristics diminished when the wing leading-edge

flap was deflected. The character of the separation-
induced vortex flow shed from the flap hinge line,

which increased the drag at the higher Mach num-
bers, was unaffected by the strake vortex. The di-
rect suction effect of the strake vortex on the fore-

body resulted in a large increase in the directional

stability at the subsonic speeds. The stable incre-
ments to the directional stability were limited at

the transonic speeds because of the reduced strake

vortex strength. The strake-wing flow-field inter-

action increased the vortex breakdown asymmetry

in sideslip and promoted a decrease in the lateral

stability at the subsonic speeds and higher angles of
attack. This effect was eliminated within the angle-

of-attack range considered in the present experiment

by deflecting the wing leading-edge flaps. The effect
of the strakes at the transonic speeds was to increase

the vortex breakdown asymmetry in sideslip and to

promote lateral instability at the higher angles of at-

tack. The flow field at transonic speeds was charac-

terized by rear shock development, breakdown of the

strake and wing vortices on the windward wing, and
stable interacting vortices without shock on the lee-

ward wing. The burst vortices blanketed the center-
line vertical tail, decreased the tail effectiveness, and

caused directional instability at the higher angles of

attack. Deflecting the wing leading-edge flaps moder-
ated the adverse effects of the strakcs on the lateral-

directional stability characteristics.

Introduction

The subsonic and transonic high angle-of-attack

flow fields about advanced fighter aircraft configu-

rations are characterized by flow separation-induced

vortical motions, mutual interactions of multiple vor-
tices, vortex breakdown, and interactions of the vor-

tex flows with shock waves and stabilizing/control

surfaces. Mutual vortex interactions are prominent

on configurations where the corotating vortices (vor-

tices rotating in the same direction) that develop
from the forebodies and wings are in proximity to

each other. The flow visualization photograph in fig-
ure 1 illustrates this situation on a small-scale model

of a generalized fighter aircraft configuration having

a slender "chine" forebody and highly swept diamond

wing. These flow-field trends promote nonlinear

aerodynamic, stability, and control characteristics.

The present wind tunnel investigation was con-
ducted to establish a data base to improve the under-

standing of these flow phenomena and to enhance

the design/analysis capability of high-performance
military aircraft operating at subsonic and transonic

speeds and at high angles of attack. The effects of

chine-like forebody strakes and the Mach number on

the longitudinal and lateral-directional characteris-
tics of a generalized fighter configuration with a 55 °

cropped delta wing were determined. The model
was tested with a centerline vertical tail, with and

without the strakes, and with constant-chord wing

leading-edge flap deflection angles of 0 ° and 30 °. The
testing was conducted in the 7- by 10-Foot Tran-
sonic Tunnel at the David Taylor Research Center

(DTRC) at Mach numbers of 0.40 to 1.10; Reynolds
numbers based on the wing mean aerodynamic chord
of 1.60 × 106 to 2.59 × 106; angles of attack from 0 °

to a maximum of 28°; and angles of sideslip of 0 °,

+5 ° , and -5 ° .

Symbols

BL butt line, in.

b reference wing span, in.

C D drag coefficient,
qoc Dref

Lift
CL lift coefficient,

Cl body-axis rolling-moment
Rolling moment

coefficient, qocSrefb



Cl 3

C"gn

C_

Cn 3

Cp11/

Cp_v

c;

ct

_T

DTRC

FS

LE

LVS

M_c

MHB

MRC

NSRDC

P

lateral stability derivative, _d_,

calculated by (Q)_=+5° - (Q)_=-_°10o
per deg

pitching-moment coefficient refer-
Pitchin_ moment

enced to 0.40_, qo_ra_

body-axis yawing-moment

coefficient, Yawing moment
qvc Sref b

directional stability derivative, 0__,

calculated by (Cn)3=+5° - (Cn)p= 5010°
per deg

wing upper surface static pressure

coefficient, p-poe
qoc

vacuum pressure coefficient, -2

pressure coefficient corresponding to
Sonic speed,

(_){[(-y-1)M_+I +2] 35-1}

side-force coefficient, Side force_-7-Z-gjj

side force due to sideslip, 0_,

calculated by (CY)P=+5° - (Cr)._=_5o
I0 o

per deg

wing centerline chord, in.

wing mean aerodynamic chord,

2( ___c_-ct- c+ ct]' in.

wing tip chord, in.

vertical tail mean aerodynamic
chord, in.

David Taylor Research Center

fuselage station, in.

leading edge

laser vapor screen

free-stream Mach number

maximum half-breadth

moment reference center, 0.40_

Naval Ship Research and Develop-
ment Center

local upper surface static pressure,

lb/ft 2

po total pressure, lb/ft 2

Pet free-stream static pressure, lb/ft 2

q local dynamic pressure, lb/ft 2

q_o free-stream dynamic pressure,
1 2 2
_'yp_M_, lb/ft

Ree Reynolds number based on _,

Sre f reference wing area, in 2

s wing local scmispan distance from

fuselage centeriine to wing leading
edge, in.

To total temperature, °F

Voc free-stream speed, ft/sec

WRP wing reference plane

x distance along wing centerline chord

measured from wing apex, in.

y distance along wing local semispan
measured from fuselage centerline,
in.

WL Water line, in.

a angle of attack, deg

fl angle of sideslip, deg

-y ratio of specific heat constants, 1.4

ALE, ATE wing leading-edge and trailing-edge
sweep angle, respectively, deg

eSLE leading-edge flap deflection angle

measured normal to hinge line,

positive leading edge down, deg

# coefficient of viscosity, lb-sec/ft 2

p density, lb-sec2/ft 4

Experimental investigation

Model Description and Test Apparatus

The testing was conducted with a model of a

generalized fighter configuration with a 55 ° cropped

delta wing, which is illustrated in figure 2. The model

geometry is summarized in table I. The fuselage fea-
tured circular cross sections from FS 0.00 to FS 3.00.

Farther aft, the fuselage cross sections had slab sides

with circular top and bottom. The slab height in-

creased linearly from 0.00 in. at FS 3.00 to a max-

imum of 0.60 in. at FS 11.50. The slab height of
0.60 in. was maintained from FS 11.50 to the model

base (FS 42.00 ). The wings were mounted to the
fuselage such that the wing reference plane (WRP)
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was in the mid position (WL 0.00). The wings had a

55 ° leading-edge sweep and cropped delta planform

with aspect ratio 1.81 and taper ratio 0.2. The at-

tached flow supersonic wing design method described
in reference 1 was used to define the camber and twist

distributions to yield minimum drag at a maneuver-

ing Mach number of 1.2 and a self-trimmed lift coef-

ficient of 0.2. A thickness distribution according to

reference 1 corresponding to an NACA 65A005 airfoil
section was wrapped around the mean camber lines

from the 15-percent local chord to the trailing edge.
A modified thickness distribution was used from the

wing leading edge to the 15-percent local chord. A
cubic spline fit was employed to provide a sharp lead-

ing edge while maintaining continuity of the upper
and lower surface slopes about the 15-percent-chord

location. Several strcamwise section profiles from the

wing root to the wing tip are shown in figure 3.

The wings featured full-span leading-edge flaps

having constant-chord planform as shown in figure 2.

The total flap exposed area (2 flaps) was 12 percent

of the wing reference area. The wings were tested
with the flaps undeflected and deflected 30 ° measured

normal to the hinge line as shown in the section cuts

in figure 4. The gap at the flap knee that is depicted

in the sectional cuts was filled during the testing ms

shown in the figure.

The sharp-edge chine-like forebody strakes had a
curved, or gothic, planform and a wedge cross sec-

tion as shown in figure 5. The total exposed strake

area (2 strakes) was 6.7 percent of the wing refer-

encc area. For simplicity, the strakes were mounted

in a mid position (WL 0.00) along the slab sides

of the fuselage forcbody beginning at FS 3.00 and
extending to FS 16.00. The strakes were copIanar

with the W_RP. Because of the wing twist and cam-

bcr, however, the strakes did not fair into the wing
leading edges but were decoupled from the wings.

At the wing root (BL 1.50), the strake trailing edge

was approximately 0.50 in. above the wing leading
edge. The purpose of the strakes was to generate a

strong forebody vortex system that would interact

with the wing flow field. This would simulate in a

simple, yet effective, manner tile vortex interactions

on a more complex, blended chine forebody-fighter
wing configuration such as that shown in figure 1.

The strakes were removable to allow testing of the

isolated wing-body-tail configuration.

The centerline vertical tail is illustrated in fig-
ure 2. The tail had biconvex sections and a maximum

thickness of 4 percent of the local chord.

The model was tested with a canopy as shown

in figure 2. The canopy served as a fairing for

pressure measurement instrumentation installed in

the fuselage.

Seventy-nine surface static pressure orifices were
used during the testing and were distributed in five

spanwise rows on the upper surface of the right

wing as illustrated in figure 6. The measurement

stations were situated at x/c = 0.30, 0.40, 0.50,

0.625, and 0.75, where x is the distance along the

wing centerline chord c measured from the wing apex.

A moment reference center (MRC) of 0.40_ was

chosen as being representative of a tailless fighter

aircraft with a 10-percent design instability (negative
static margin) at low angles of attack (ref. 2).

The model six-component forces and moments

were measured with an internally mounted strain-

gauge balance. The angle of attack was measured
with an accelerometer mounted inside the model

nose. The sideslip angle was determined with mea-

surement devices installed in the model support
system, and the measurements were corrected for

balance and sting deflection under load.

Flow Visualization Technique

The off-body flow visualization was conducted

with a vapor screen technique (rcf. 3). The present
experiment was the first application of the vapor

screen technique in the DTRC facility. Remotely

controlled injection of water into the wind tunnel

circuit was not available. Consequently, water was

deposited into the settling chamber prior to a run.
This increased the relative humidity in the test sec-

tion during tunnel operation which created conden-
sation within the vortex flows about the model. The
vortex cross sections were illuminated with an intense

sheet of laser light. For this reason, the flow visual-
ization technique is referred to as laser vapor screen

(LVS). The model was painted flat black to contrast

with the light sheet.

Laser operational requirements prevented the

laser head from being located in the low-pressure

plenum around the test section. An 18-W argon-
ion laser was situated inside the wind tunnel con-

trol room. The laser beam was steered by mirrors

through the control room observation window, into
the plenum, and to the light-sheet-generating optics

mounted in a window on the right side of the test

section. The light sheet optics location relative to

the test section is shown in figure 7. Automated

translation of the light sheet was not currently pos-

sible, hence, the light sheet was manually positioned
with respect to the model. Light sheet locations

at x/c = 0.50 and 0.75 were selected, and orthogonal-

ity of the light sheet with the model was established



at a _ 20 °. A large portion of the flow on the left
side of the model was immersed in the shadow of the

fuselage. A limited attempt was made during testing
to illuminate the flow about the left wing through the

use of a series of mirrors in the window on the oppo-

site side of the test section from the light sheet source.

The reflected laser light was marginally successful in

revealing the wing vortical flow.

The off-body flow-field features were documented

with video and still photography in three-quarter rear

positions on the left and right sides of the test section

(fig. 7). A result obtained in the present experiment
with the LVS technique is shown in figure 8.

Wind Tunnel Facility and Test Conditions

The model force, moment, and surface static pres-

sure measurements and laser vapor screen results

were obtained in the 7- by 10-Foot Transonic Tunnel

at DTRC (formerly NSRDC) in Bethesda, Marylaad.
The DTRC facility is a continuous-flow, closed-

circuit facility capable of operating over a Mach num-

ber range from 0.20 to 1.17 and an equivalent pres-
sure altitude range from sea level to 40 000 feet. A

complete description of the transonic wind tunnel is

provided in reference 4. The model with and without

the forebody strakes is shown sting mounted in the

slotted test section in figure 9.

The test results were obtained at free-stream

Mach numbers from 0.40 to 1.10 and angles of attack

from 0 ° to a maximum of 28% Pitch polars were ob-

tained at sideslip angles of 0 °, +5 °, and -5 °. The

tunnel was operated in the evacuated mode (ref. 4),

and the tunnel staflnation pressure varied with the
Mach number. The Reynolds number based on the

wing mean aerodynamic chord Re_ varied from ap-
proximately 1.60 x 106 to 2.59 x 106. The range of
test conditions is listed in table II.

Base pressures and balance cavity pressures were
measured and used to adjust the drag data to

the condition of free-stream static pressure acting

over the fuselage cavity and base areas. Tunnel
wall corrections were not applied since the DTRC

7- by 10-Foot Transonic Tunnel test section features

slotted ceiling and floor. The strakes, wings, fuselage,
and tail were tested with free transition.

Discussion of Results

Representative results obtained in the 7- by
10-Foot Transonic Tunnel at DTRC are presented in

the following sections. The longitudinal forces and

moments, wing upper surface static pressure distri-

butions, and lateral-directional stability derivatives

4

are presented. Available laser vapor screen flow vi-
sualization results are correlated with the quantita-
tive data trends. The model without the strakes

is referred to as the "wing-body-tail configuration."
All force and moment coefficients are based on the

reference wing area Sre f-

The upper surface static pressure coefficients

Cp,u on the right wing at x/c = 0.30, 0.40, 0.50,
0.625, and 0.75 are plotted against the local semispan

distance y measured from the fuselage centerlinc,

normalized by the local semispan 8. Consequently,

y/s values of 0.0 and 1.0 correspond to the fuselage
centerline and the wing leading edge, respectively.

Comparisons of the pressure data obtained on
=

the model with the strakes off and on are typically

presented at nominal angles of attack of 12 °, 16 °, 20 °,

and maximum c_. The angles of attack are denoted as

approximate in the data plots due to small variations

about the scheduled, or target, a's.

The technical discussion is divided into four ma-

jor sections. The first and second sections show
the effects of the forebody strakes on the longitu-

dinal and lateral-directional characteristics, respec-

tively, with the wing leading-edge flap deflection an-

gles of 0 ° and 30 °. The Mach number effects on

the longitudinal and lateral-directional characteris-
tics with _LE = 0° and 30 ° are presented in the third

and fourth sections, respectively. It is noted that a

30 ° deflection of the leading-edge flap is excessive at

transonic speeds (ref. 5). In practice, the flap would
be scheduled with the Mach number and angle of

attack to yield maximum aerodynamic performance.

Emphasis in the present test is on the trends associ-
ated with the addition of the strakes in the presence

of a deflected wing leading-edge flap.

Effect of Forebody Strakes on

Longitudinal Characteristics

Leading-edge flap undejtected. The effect of
the forebody strakes on the longitudinal force and
moment characteristics and the wing upper surface

static pressure distributions at Moc = 0.40, 0.60,

0.80, 0.95, and 1.10 is shown in figures 10, 11, 12, 13,

and 14, respectively. The wing spanwise pressure dis-
tributions are shown for selected angles of attack at

each Mach number. Selected laser vapor screen flow
visualization results are presented in figure 15 to aug-

ment the analysis of the force and moment data and

surface pressure measurements. To highlight flow de-
tails that are not obvious in the vapor screen results,

low-speed (Mcc = 0.05) smoke flow visualization re-
sults obtained in reference 6 on a small-scale model of

the present configuration with flat-plate strakes and

|
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wingsareshownin figure16. In addition,fluores-
centsurfaceoil flowpatternsobtainedin reference6
on the samewindtunnelmodelusedin thepresent
studyareshownin figure17.

Thestrakespromotea largeincreasein lift at an-
glesof attackgreaterthanapproximately16°, a re-
ductionin dragat moderateandhighlift, andanin-
creasein thepitchinstabilityat Moc = 0.40 and 0.60

(figs. 10(a) and ll(a)). The lift increase and drag re-
duction are due to the favorable interaction of the

strake leading-edge vortex with the wing flow field.

The strake vortex artificially induces spanwise flow

gradients on the wing that are similar to those ap-

pearing naturally on highly swept wings (ref. 7). This

effectively delays wing vortex breakdown to higher

angles of attack. The increased pitch instability is
due to the larger planform area and the strake vortex-
induced lift ahead of the moment reference center.

The planform area increase with the strakes on in-

creases CL, since the lift coefficient is based on the

wing reference area. However, the lift increase at the

higher angles of attack exceeds the effect of the strake
area addition. This indicates that a synergistic effect
occurs as a result of the interaction of the strake and

wing flow field (ref. 8).

The wing surface pressure distributions at

M_c = 0.40 and 0.60 indicate that the principal ef-

fect of the strake at a _ 12 ° (figs. 10(b) and ll(b))

is to displace the wing vortex-induced suction peak
outboard. Increasing the angle of attack to approxi-

mately 16° (figs. 10(c) and ll(c)) broadens the pres-
sure distribution and reduces the maximum suction

pressure at x/c = 0.75 with the strakes off. These
trends are consistent with the effects of wing vortex

breakdown. Addition of the strakes delays the on-

set of vortex breakdown and reestablishes the peak
suction pressure levels. The pressure distributions

at a _ 20 ° with strakes off (figs. 10(d) and ll(d))
show that vortex breakdown is well advanced over

the wing. Experimental results obtained in refer-
ence 9 on an isolated, fiat-plate 55 ° delta wing and

Euler code predictions in reference 10 on the wing-

body configuration used in the present study also re-
vealed the extensive nature of vortex breakdown at

a _ 20 °. The strake vortex energizes the wing vor-

tical flow at this angle of attack; this restores the
vortex-induced suction peaks at all pressure mea-
surement stations. Vortex breakdown is near the

wing apex at ct _ 26 ° with strakes off (figs. 10(e)

and l l(e)), and the pressure distributions are flat

and uniform between x/c = 0.30 to 0.75. Instal-
lation of the strakes stabilizes the wing vortex and

increases the suction pressure levels along the entire

wing. This effect is not as pronounced at x/c = 0.75

because of upward displacement of the wing vortex

from the surface. At a ._ 26 ° and x/c = 0.75, there is

evidence of two vortex pressure signatures. The out-

board pressure peak is induced by the wing vortex,
whereas the inboard pressure signature is induced

by the strake vortex as it moves downward and out-

board over the wing. The absence of the strake vor-

tex "footprint" in the wing surface pressures to this

point demonstrates a lack of intertwining between

the strake and wing vortices. In reference 11, the
observation is made that vortex cores that do not di-

rectly interact represent a more stable floe" situation
in comparison with a system of vortices where the
vortex cores intertwine.

The laser vapor screen photographs at Mcc = 0.40

and a _ 22 ° and 26 ° in figures 15(a) and 15(b) show

stable strake and wing vortices at x/c = 0.50. The

........... flow was not visible on the wing-body-

tail configuration because of wing vortex breakdown.
The camera position corresponds to a left three-

quarter rear view. Note that the laser light sheet is

projected from the right side of the test section. As

a result, the vortex on the left wing is not visible,
because it is in the shadow of the fuselage. At

subsonic speeds, stable vortices appear as "donut-

shaped" structures with the vapor screen technique

and feature a bright ring of condensation surrounding

a "hollow" core. The strake and wing vortices are

widely spaced at x/c = 0.50. The low-speed smokc

flow visualization photographs (ref. 6) in figure 16
corresponding to a _ 20 ° and 25 ° show the planview

trajectories of the strake and wing vortices which are

representative of those observed on the larger model.

No indication of vortex breakdown is shown, and the
strake and wing vortices are in mutual proximity only

at a _ 25 ° (fig. 16(b)) and near the the wing trailing

edge.

The force and moment and pressure distribution

trends are similar at 2lf_c = 0.80 and 0.95 (figs. 12

and 13), although the data comparisons arc confined
to slightly lower angles of attack. Testing of the

wing-body-tail configuration was limited to a _ 22 °
at Moc = 0.80 and 0.95 because of observed model

dynamics or buffeting. With the strakes on, the max-

imum angle of attack at M_c = 0.80 was approxi-

mately 21 ° because of the balance pitching-moment
limit.

The pressure distributions on the wing-body-tail

configuration at a _ 22 ° and M'cc = 0.80 and 0.95

(figs. 12(e) and 13(e)) are nearly uniform. No in-
dication is seen of vortex-induced flow reattachment

along most of the wing with strakes off. These trends
are consistent with the effect of wing vortex break-

down. The Euler code predictions in reference 10

5
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on the wing body configuration showed that vortex

breakdown effects on the wing surface pressures were
extensive at a _ 20 ° and Mm = 0.80. The de-

velopment of shock waves over the wing beginning
at Moc = 0.80 is also plausible because most of

the flow on tile wing upper surface is supersonic.

Locally supersonic flow can be identified by com-
paring the experimental surface pressure coefficients

in figures 12(b) (e) with the critical pressure coef-

ficient C_, which corresponds to the pressure coef-
ficient where the local flow is sonic. Pressure coef-

ficicnts that exceed C_ define regions of supersonic
flow. Shock waves arc identified in the surface flow

pattern (ref. 6) in figure 17(a) corresponding to the

wing body configuration at Moc = 0.95 and c_ _ 20 °.
Surface streamlines and a tentative view of the off-

surface flow are sketched in figures 17(b) -(d) to high-
light significant topological features. Shock waves are

typically manifested in oil flow patterns by a sudden

change in the surface streamline direction as the flow
traverses the shock. The surface streamlines show

the presence of a rear, or terminating, shock w-ave
that is approximately perpendicular to the axis of

the wing vortex. This shock extends spanwise from

the wing root region and through the wing vortex
footprint. The footprint of a cross-flow shock wave

situated underneath the wing vortex and emanating
along a ray from the apex is also apparent. The rear

and cross-flow shock waves appear to intersect. The

presence of the rear shock coincides with an abrupt

change in the surface streamline direction along the
inboard portion of tile wing, the loss of the cross-flow

shock footprint, a region of reversed flow near the

leading edge, and a discontinuity in the secondary
separation line. The reversed flow is associated with

a three-dimensional separation region as sketched in

figure 17(b). Downstream of the shock, the vortex-

induced primary flow reattaehment line is smeared,
and the surface streamlines reveal an expansion of the

wing vortex footprint; these effects are typical of vor-

tex breakdown. The development of a second termi-

nating shock wave is suggested by the marked turn-

ing of the surface streamlines near the wing trailing
edge.

Reference 12 has indicated that a resulting ef-
fect of vortex breakdown coexisting with a rear shock

wave is severe buffeting due to the highly unsteady
flow. This effect is consistent with the model buffet-

ing (strakes off) observed in the present experiment

at Moc = 0.80 and 0.95. Surface flow patterns show-
ing the coexistence of vortices and shock waves at

transonic speeds have also been obtained on a 50 °

swept wing (ref. 13), 55 ° delta wing-body (ref. 14),
65 ° cropped delta wing (refs. 15 and 16), and 65 °

cropped delta wing-canard (ref. 17). The vortex
shock interaction has also been observed on a 65 °

cropped delta wing at Moc = 0.85 and c_ _ 20 ° to 25 °

in reference 15, where a schlieren flow visualization

technique was used. The latter study also provided

evidence of two terminating shock waves similar to

those described in figures 17(@ and (b).

Results from the present study are insufficient i
to determine if the wing vortex bursts as it con- _:-

fronts the large pressure rise imposed by the shock .._
wave or if the shock wave forms as a result of vor- !
rex breakdown. The wind tunnel oil flow patterns --"

obtained at transonic speeds in reference 18 on the

F-4D wing (ALE = 51.4 °) indicated that the devel-

opment of leading-edge vortices suppressed the for-
mation of shock waves. In reference 18 shocks were

found to exist only outside the vortex-dominated re- i

gions. These results do not support the view that "

vortex breakdown is shock induced. The theory that _,
vortex breakdown initiates shock wave development ;i
is based on the analogy of the expanded burst vortex |

to a solid body immersed i.n tile flow field. It is con- _"

jecturcd that the presence of this expanding pseudo

body promotes a flow recompression and correspond- _-
ing shock wave development. It is possible that the !

=
vortex-shock interaction contains elements of both E

views. The onset of vortex breakdown over the wing --"
i

may support the initial development of the shock

wave. Once the shock forms, it increases the longitu- i

dinal pressure rise which causes a more rapid forward
progression of vortex breakdown with increasing an-
gle of attack. The schlieren results in reference 15

showed an abrupt forward movement, of the co-

existing vortex breakdown and shock system due to
a slight increase in ct in contrast with a more gradual _-

advance of the vortex breakdown position at subsonic
(shock free) conditions.

Addition of the forebody strakes eliminated the

model buffeting at aim = 0.80 and 0.95 and re-

established the wing vortex pressure signatures be-

tween x/c = 0.30 to 0.625 and at the higher angles

of attack (figs. 12(d) and (e) and 13(d) and (e)). The

pressure distributions at x/c = 0.75 in figures 12(e)
and 13(e) show only a small effect due to the strakes

despite the significant change in the vortex flow field.

The vortex-induced pressure distributions display a
different character at the higher Mach numbers. In-

creasing the Mach number promotes a more gradual

suction pressure rise outboard of the primary flow

rcattachment position. In addition, a maximum suc-

tion pressure plateau typically exists underneath the
wing vortical flow at the higher Mach numbers in

contrast with the pronounced suction pressure peak
obtained at lower Mach numbers. Similar results
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wereobtainedonhighlysweptwingsat transonicand
supersonicspeedsin references16and19.

Thelaservaporscreenphotographin figure15(c)
showsthe forebodystrakevorticesat -M_o= 0.95,
a _ 24 °, and z/c = 0.75. The strake vortex dom-
inates the cross-flow pattern. The vortex is suffi-

ciently removed from the model surface, however,

that its presence cannot be detected directly from

the wing pressure distributions. Tile induced effect
of the strake vortex on the wing is significant, how-

ever, as shown in the surface flow pattern (ref. 6) in

figures 17(e) and (f) for Mm -- 0.95 and a _ 20 ° .
No indication is showm of a rear shock wave or the

vortex breakdown that occurred on the wing body

configuration in figure 17(a). The spanwise flow that
the strake vortex induces on the wing promotes an ef-

fective increase in the wing leading-edge sweep. This

provides a three-dimensional relief effect that delays
vortex breakdown and prevents the development of a

strong rear shock wave. A similar shock alleviation
effect has been observed in reference 18 because of the

leading-edge snag, or sawtooth, vortex on the F-4D

fighter wing. The surface flow pattern in figure 17(e)
shows a large inboard movement of the secondary

separation line with the strakes on, which is the ap-

parent result of cross-flow shock-induced boundary

layer separation (refs. 15 and 16). The corresponding

flow situation is sketched in figure 17(f). The kink
in the secondary separation line is due to a "tear-

ing" of the wing vortex feeding sheet from the leading

edge as sketched in figure 17(f). This phenomenon
has been documented in reference 20. A region of

stagnant surface flow exists outboard of the primary

vortex as shown in figures 17(e)' and (f).

The strake effect on the lift and drag at

Moc = 1.10 (fig. 14(a)) is small in comparison with
the results at Moc = 0.40 and 0.60 (figs. 10(a)

and ll(a)). The strakes continue to promote a large
unstable shift in the pitching-moment curve. How-

ever, the strake-wing-body-tail configuration exhibits

nominal longitudinal stability over a wide range of
lift coefficient due to the aft shift in the center of

pressure at this Math number. The wing-body-tail

configuration was tested to c_ _ 26 ° without encoun-
tering the model dynamics that were observed at

Moc = 0.80 and 0.95. The lack of model dynamics
is consistent with movement of the vortex breakdovna

and rear shock position aft toward the trailing edge

at Moc = 1.10. The delay in vortex breakdown onset
to a higher angle of attack at Mzo = 1.10 is caused

by the diminished upstream influence of the wing

trailing edge and the correspondingly more moder-

ate longitudinal pressure rise. This effect has been
observed on a model with a 65 ° cropped delta wing

in reference 16. The strake effect on the wing surface

pressures (figs. 14(b)-(e)) is accordingly small. Addi-

tion of the strakes displaced the wing vortex-induced

primary flow reattachment outboard but had no ef-

fect on the character or magnitude of the suction

pressure plateau underneath the wing vortical flow.

The laser vapor screen flow visualization photo-

graph in figure 15(d) at Moc = 1.10, _ .._ 24 ° ,
and z/c = 0.75 reveals a stable, ellipticatly shaped

vortex about the right wing of the wing-body-tail

configuration. At -_.Ioc = 1.10, condensation of the
water vapor occurs in the free stream. As a result,

a stable wing vortex appears as a darker region sur-

rounded by a lighter background. The flattened wing
vortex cross section is consistent with the character

of the pressure distributions (fig. 14(e)), which show
a maximum suction pressure plateau underneath the

vortex. The brighter region above the fuselage is as-
sociated with relatively weak vortices generated by

the forebody. The outboard displacement of the wing
vortex-induced flow reattachment position due to the

strakes is seen by comparing the vapor screen photo-
graphs in figures 15(d) and (e) corresponding to the

model with strakes off and strakes on at Moc = 1.10,

c_ _ 24 °, and z/c = 0.75. In both cases, the wing

vortex is a dark region surrounded by a lighter back-

ground. The intersection of the inboard edge of the
vortex region with the wing upper surface defines the

primary flow reattachment location. With the fuse-

lage upper surface as a reference position, the pri-

mary flow reattachment is farther outboard with the
strakes on. The strake vortex flows are also visible

above the fuselage on either side of the model center-

line. The lateral separation of the strake and wing

vortices at M_c = 1.10 is apparent in figures 15(e)

and (f).

Leadin9-edge flap deflected 30 °. The fore-

body strake effect on the longitudinal forces and
moments and wing surface pressure distributions

at 21[_c = 0.40, 0.60, 0.80, 0.95, and 1.10 with the

constant-chord wing leading-edge flap deflected 30 °

is shown in figures 18, 19, 20, 21, and 22, respec-

tively. The strake vortex-induced lift increase and
drag reduction at Moc = 0.40 and 0.60 (figs. 18(a)

and 19(a)) diminish when the wing flap is deflected.

The deflected flap delays flow separation at the wing

leading edge to a higher angle of attack. Once a
vortex forms from the leading edge of the deflected

flap, it is less susceptible to breakdown because the

pressure rise is less severe along the wing and the

vortex swirl angle is reduced (ref. 21) and, conse-

quently, weakens the vortex at a given angle of at-
tack. The strake effect on the wing flow diminishes

since the wing efficiency is enhanced by the deflected
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flap.Addingthestrakescontinuesto promotealarge
unstableshift in thepitching-momentcurves.

Thepressuredistributionson thewing-body-tail
configurationat Mzc = 0.40 and 0.60 and a ._ 12 °

(figs. 18(b) and 19(b)) indicate that the flow along
the upper surface of the flap and main wing is pri-

marily attached. There is evidence of a small vortical

flow situated close to the leading edge at x/c = 0.40

and 0.50; this is indicated by the local suction pres-

sure rise near the leading edge. The strake effect
on the attached flow-dominated pressure distribu-

tions is small. The suction pressure peak near the

flap hinge line at x/c = 0.30 to 0.625 is associated
with the acceleration of the attached flow around the

flap knee. Flow separation from the flap knee has a

relieving effect on the surface pressure distribution

near the hinge line at M_c = 0.60 and x/c = 0.75
(fig. 19(b)). At higher angles of attack where flow

separation occurs everywhere along the wing lead-

ing edge, the resultant primary vortex is small and
weak because of the small angle between the de-

fleeted flap leading edge and the on-coming flow. As

long as the vortex is confined to the flap surface, the

strake effect on the wing surface pressures is small.

This effect is illustrated in figures 18(c) and 19(c)
for Mec = 0.40 and 0.60 and a _ 16 °. The leading-

edge w_rtex suction peaks migrate inboard of the
flap hinge line on the wing-body-tail configuration

at a _ 20 ° (figs. 18(d) and 19(d)). As a result, the
strake has a larger effect on the wing surface pres-

sures. Addition of the strakes slightly delays the

inboard migration of the wing vortex pressure sig-
nature from the flap to the main wing and increases

the suction peak magnitude at x/c = 0:50 to 0.75.

At a --- 24 ° (figs. 18(e) and 19(e)) and o_ _ 26 °

(figs. 18(f) and 19(f)), where vortex breakdown dom-
inates the flow about the wing-body-tail configura-

tion, adding the strakes stabilizes the wing vortical

flow, displaces the wing vortex outboard, and sig-

nificantly increases the maximum suction pressure

levels. It is interesting to note that the strake vor-

tex pressure signature cannot be discerned in the
wing pressure distributions at any angle of attack

at Mcc = 0.40 and 0.60. The outboard displacement

and weakening of the wing vortex due to the deflected

flap decrease its induced effect on the strake vor-

tex. As a result, the strake vortex is situated farther

inboard and higher above the wing.

Deflecting the leading-edge flap reduced the buf-

feting of the wing-body-tail configuration at the

higher Mach numbers. As a result, test data were

obtained up to _ _ 26 ° at M_c = 0.80, 0.95,

and 1.10 (figs. 20, 21, and 22). The strake effect
on the lift, drag, and pitching-moment characteris-

tics at M_ = 0.80 and 0.95 (figs. 20(a) and 21(a))
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is similar to that observed at l_l_c = 0.40 and 0.60.

At M_ = 1.10 (fig. 22(a)), the principal effect of the

strakes is observed to be a large unstable shift in the

pitching-moment curve.

The pressure distributions with and without the

strakes at Moc = 0.80, 0.95, and 1.10 and c_ _ 12 °

(figs. 20(5), 21(5), and 22(5)) indicate attached flow
along the flap. At c_ _ 16° (figs. 20(c), 21(c),

and 22(c)), the pressure signature of a small leading-

edge vortex confined to the flap is evident at all mea-

surement stations, except x/c = 0.30 at M_c = 1.10.
The d0nfinant feature of the surface pressures is the

footprint of a vortex formed by flow separation from

the leading-edge flap hinge line. The oil flow pat-

terns in figures 23(a) and (b) taken from reference 17
illustrate the sensitivity of the surface streamlines to
the Mach number at a constant lift coefficient and

show the hinge-line vortex footprint on the wing-

body-tail configuration of the present study. The
hinge-line vortex signature is characterized by flow

reattaehment to the inboard portion of the wing and

a maximum suction pressure plateau underneath the
vortex that can extend along a significant spanwise
extent of the wing. Reference 22 indicated that flow

separation near the flap hinge line may be shock in-

duced at the higher Math numbers as sketched in

figure 23(c). Comparison of the wing surface pres-

sures at Moc = 0.80 and c_ _ 12 ° to C_ in fig-
ure 20(b) suggests that the attached flow on the flap

expands supersonically about the flap knee and then

separates to form a vortical flow as depicted in fig-

ure 23(e). The strakes reduced the lateral extent of
the hinge-line vortex. This reduction is caused by

the strake vortex-induced spanwise flow on the wing

and is indicated in the surface pressures by an out-

board displacement of the flow reattachment induced
by the hinge-line vortex. Increasing the angle of at-

tack to 20 ° promotes a loss of the leading-edge vor-
tex pressure signature on the flap at Moo = 0.80

and x/c = 0.625 and 0.75, as shown in the pressure

distributions on the wing-body-tail configuration in

figure 20(d). This loss is attributed to a migration
of the leading-edge vortex off the flap because of an

interaction with the hinge-line vortex. The flow
interaction coincides with vortex breakdown as in-

dicated by the broadening of the pressure distribu-
tions and the reduced maximum suction pressure lev-

els at a _ 20 ° to 26 ° in figures 20(d) (f). This effect
occurs at a higher angle of attack at M_ = 0.95

(fig. 21(e) at c_ _ 24 °) and does not occur up to the

maximum angle of attack at Mcc = 1.10. The strake
vortex does not have a significant effect on the inter-

action of the hinge-line vortex and the leading-edge

vortex at M_ = 0.80 and 0.95 but appears to slow

the forward progression of vortex breakdown.



Effect of Forebody Strakes on
Lateral-Directional Characteristics

Leading-edge flap undej_ected. Figures 24
and 25 show the effect of the forebody strakes

on the static lateral-directional stability derivatives

at Moc = 0.40 and 0.90, respectively. The sta-

bility derivatives were computed from the force

and moment data obtained in angle-of-attack polars

at _ - +5 ° and -5 °. Aerodynamic nonlinearities

and flow-field hysteresis effects (ref. 23), which can
be "masked" by computing stability derivatives in

this fashion, were absent within the ranges of angle

of attack and sideslip tested in the present experi-

ment. To assist in the interpretation of the stability
derivative trends, the spanwise pressure distributions

on the windward and leeward wings with and without

the strakes are presented at selected angles of attack

in figures 24 and 25. Only the right wing was in-

strumented with upper surface pressure orifices. The

windward and leeward wing pressure data were ob-

tained in angle-of-attack polars at/3 = +5 ° and -5 °,
respectively. Sketches based on laser vapor screen

flow visualizations at M_c = 0.40 and Moo = 0.90

are shown in figure 26. Testing of the wing-body-

tail configuration in sideslip was limited to a _ 22 °
at him = 0.90 because model buffeting was observed

in pitch.

Addition of the strakes increases the directional

stability (more positive values of Cn_) at Moc = 0.40

(fig. 24(a)). This effect is first apparent at a -_ 8°

and increases up to the maximum test angle of attack

on the strake-wing-body-tail configuration of approx-
imately 23 ° . The positive increments to the side force

due to sideslip Cyz with the strakes on indicate that
the source of the directional stability increase is the

forebody. In sideslip, the windward strake vortex

is in proximity to the forebody, and the high suc-

tion pressures acting on the lateral-facing surface of

the forebody promote a restoring yawing moment.
This effect increases with the angle of attack because

of the increased strength of the strake'vortex. The
strakes promote a slight increase in the lateral stabil-

ity at angles of attack from approximately 8° to 18 °
and decrease the lateral stability at higher angles of
attack.

The small increase in lateral stability (more neg-

ative values of Cl_ ) at c_ _ 8° to 18 ° is caused by an
overall increase in the vortex-induced suction pres-

sure levels on the windward wing relative to the lee-

ward wing. This effect is illustrated in the surface

pressure distributions at c_ _ 12 ° between x/c = 0.30

and 0.625 (figs. 24(b) and (c)) and at a _ 16 ° be-
tween x/c = 0.30 and 0.50 (figs. 24(d) and (e)). An

opposite effect occurs farther aft on the wing at a

16 °. The sketches in figure 26, which are based on
flow-field observations at Moo = 0.40, clarify the

pressure distribution trends. Along the forward por-
tion of the wing, the effect of sideslip is to move the

strake vortex inboard and closer to the wing surface
on the windward side and outboard and upward on

the leeward side. The close proximity of the wind-

ward strake vortex to the wing increases its induced

effect on the wing vortical flow relative to the lee-

ward side. In addition, more of the windward wing is

immersed in the strake vortex-induced upwash field,

whereas the opposite effect occurs on the leeward

wing. This effect is similar to the flow-field inter-

action observed on closely coupled canard-wing con-

figurations in sideslip (ref. 24). Farther aft, however,
the windward strake vortex migrates inboard toward

the fuselage, and its induced effect on the wing corre-

spondingly decreases. In fact, the windward pressure

distributions at a _ 16 ° and x/e = 0.75 (figs. 24(d)

and (e)) suggest that adding the strake does not sig-

nificantly delay the onset of wing vortex breakdown.
The strake-wing vortex interaction increases on the

leeward side as a result of the outboard migration of
the strake vortex. The leeward pressure distributions

at x/e = 0.75 in figures 24(d) and (e) indicate that

adding the strakes stabilizes the leeward wing vor-
tex and increases the wing vortex pressure signature.

This effect limits the lateral stability increase with

the strakes on. The ability of the windward strake
vortex to affect a global change in the wing flow field

diminishes at higher angles of attack (figs. 24(f)

(i)). The windward strake vortex moves farther in-

board as the angle of attack increases, and the flow
that it induces on the wing is insufficient to halt

the forward progression of wing vortex breakdown

on the windward side. Conversely, breakdown of the

leeward wing vortex, which is apparent in the sur-
face pressure distributions witil strakes off (figs. 24(f)

and (h)), is eliminated with the strakes on (figs. 24(g)

and (i)). The wing-body-tail configuration exhibits

lateral stability at the higher angles of attack since
vortex breakdown asymmetry is not severe between

the windward and leeward sides. Adding the strakes

increases the wing vortex breakdown asymmetry at

the higher values of a and, consequently, reduces the

lateral stability.

Addition of the strakes slightly increases the di-

rectional stability at Mcc = 0.90 (fig. 25(a)) at angles
of attack between approximately 8° and 20 ° . The

strakes promote directional instability (negative val-

ues of Cn_) at higher angles of attack. The stable

increments to Cnz are smaller at M_o = 0.90 relative

to Moc = 0.40 (fig. 24(a)) because of the reduced
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forebodystrakevortexstrengthat tile higherMach
number(refs.25and26). Thelargepositiveincre-
mentsin Cyz at angles of attack greater than 20 °
suggest that the source of the directional instabil-

ity is the vertical tail. The vapor screen photograph

and flow-field sketch in figure 26(b) for c_ -._ 22 °
and /3 = +5 ° reveal breakdown of the windward

strake and wing vortices upstream of the centerline
tail. Flow-field observations indicated that the wind-

ward strake and wing vortex bursting was more ad-
vanced at a given angle of attack at _I_c = 0.90

than at M_o = 0.40. The burst vortex system blan-

kets the centerline tail Which reduces the local dy-

namic pressure q and promotes the unstable Cnz in-
crements. Beginning at a _ 12 °, adding the strakes

decreases the lateral stability, and the unstable Clz

increments increase with increasing angle of attack.
At angles of attack greater than approximately 16 °,

the strake-wing-body-tail configuration exhibits lat-

eral instability. The vapor screen result at a _ 22 °

and /3 = +5 ° in figure 26(b) indicates that break-
down of the windward strake and wing vortices is well

advanced, whereas the leeward strake and wing vor-

tices are stable. The severe vortex breakdov,_n asym-

metry in sideslip is consistent with the large positive

(unstable) value of Clz at _ _ 22 ° in figure 25(a).

Surface oil flow visualization on a 55 ° delta

wing body configuration (ref. 14) has shown that a

rear shock wave coexists with the wing vortex at
M:_c = 0.90 beginning at _ _ 12 ° . As a result, it

is expected that the flow about the wing-body-tail

configuration in sideslip at M_ = 0.90 will feature

interacting vortices and shock waves. The surface

pressure distributions on tile wing-5ody-tail config-

uration at _ _ 20 ° and 22 ° (figs. 25(f) and (h))
are uniform over most of the windward and lee-

ward wings; this suggests that the vortex-shock inter-

action limits the vortex breakdown asymmetry due
to sideslip. As a result, the wing-body-tail configu-

ration exhibits lateral stability up to the maximum

angle of attack of 22 ° despite the extensive nature of
vortex breakdown.

The upper surface pressure distributions at

M_c = 0.90 in figures 25(b) (i) indicate that adding
the strakes increases the overall suction pressure level

on the leeward wing relative to the windward wing.

This effect is first apparent along the aft wing re-

gion at ct _ 12° (x/c = 0.75 in figs. 25(5) and (c))

and advances forward to encompass the entire wing

at o_ _ 24 ° (figs. 25(h) and (i)). The vapor screen

photograph in figure 26(b) suggests that the wind-

ward strake vortex has a limited effect on the wing
flow field and, consequently, the vortex rear shock
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interaction. This is supported by the windward wing

surface pressures in figures 25(5) (i), which show lit-
tle change due to adding the strakes. In contrast, the

peak vortex suction pressure levels induced by the

leeward wing vortex are maintained at x/c = 0.30
to 0.75 up to o_ _ 24 °. The interaction of the lee-

ward strake vortex with the wing flow field stabilizes

tile wing vortex and moderates the effect of the shock

wave in a manner similar to that shown previously in
the surface oil flow pattern at M_c = 0.95 and/3 = 0°

in figures 17(c) and (d). The extensive nature of the
wing vortex breakdown on the windward side com-
bined with the alleviation of vortex breakdown on

tim leeward wing results in the large unstable values

of Ct_ at the higher angles of attack.

Leading-edge flap deJ_ected 30 °. The fore-

body strakc effect on the lateral-directional sta-

bility derivatives and the wing surface pressure

distributions with the constant-chord leading-edge
flap deflected 30 ° is shown in figures 27 and 28

for -_I,_c = 0.40 and 0.90, respectively. Laser va-

por screen results and the corresponding sketches

for M_c = 0.90 are presented in figure 29.

The strake effect on Cn;_ and Ct_ at Mzc = 0.40
(fig. 27(a)) is similar to the result obtained for

_LE = 0° (fig. 24(a)). The strakes promote a large

increase in the directional stability due to the suction
pressures induced by the windward strake vortex on

the forebody side. The strakes promote larger, stablc

increments in CI;_ which extend to higher angles of
attack with the flaps deflected.

The wing surface pressures at M_c = 0.40

and c_ _ 12 ° with the strakes off (fig. 27(b)) in-
dicate that the flow is attached on the windward

flap and along tile main wing inboard of the flap
knee. A small vortex is situated on the leeward flap,

which induces higher suction pressures in comparison
with the windward side. Flow reattachment occurs

on the flap, and the reattached flow suction pres-
sure levels along the flap knee and the main wing

are comparable with those on the windward side. In

si(teslip, the leading-edge flap deflection angle mea-
sured in the streamwise direction increases on the

windward wing and decreases on the leeward wing.
As a result, leading-edge flow separation first occurs

on the leeward wing. The strakes increase the at-

tached flow suction pressure levels inboard of the

flap knee on the windward wing relative to the lee-

ward wing (fig. 27(c)). in addition, the difference
between the vortex-induced suction pressures on the

leeward flap and the attached flow suction pressures

on the windward flap diminishes with the strakes on.

These effects combine to promote a stable increment
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in Cl;_. The strake effect on the relative suction pres-
sure levels on the windward and leeward wings in-

creases at c_ _ 16 ° (figs. 27(d) and 27(e)). Leading-

edge separation occurs on both wings at this angle of
attack. With the strakcs off, the vortex suction pres-

sure signature is more pronounced on the leeward flap

in comparison with the windward flap. The strakes
reduce the difference in tile vortex-induced suction

pressure levels on the forward-facing surface. The

strakes promote a maximum stable increment in ClZ

at o_ _ 20 ° (fig. 27(a)). The corresponding pres-
sure distributions (figs. 27(f) and (g)) show that the

strakes significantly increase the overall suction pres-
sure levels on the windward wing and flap relative to

the leeward side. The windward and leeward wing

vortex pressure signatures are prominent both with

and without the strakes at this angle of attack. No
vortex breakdown is indicated in the windward wing

pressure distributions in contrast with the results ob-
tained for the flap undeflected (figs. 24(f) and (g)).

Both the windward and leeward wing vortices ex-

hibit an inboard migration from the deflected flap

onto the main wing as c_ increases. The strakes slow

the migration of the leeward wing vortex but do not
affect the windward wing vortex migration or the ap-

parent discontinuity of the windward vortex feeding

sheet. Evidence of feeding sheet discontinuity is pro-

vided in the surface pressures at x/c = 0.625 and 0.75

(figs. 27(f) and (g)). Sketches of the postulated flow
mechanism are shown in figures 27(f) and (g). The

pressure data reveal two suction peaks which suggest

that the windward wing vortex "tears" away from

the leading edge while another vortex forms from

the leading edge farther outbo_/rd. Vortex sheet dis-
continuities have been observed in wind tunnel va-

por screen flow visualizations in references 16 and 17
and in Euler code computations in reference 27. Both

configurations exhibit diminished levels of lateral sta-

bility at higher angles of attack and smaller stable ClZ
increments due to the strakes because of the onset

of wing vortex breakdown asymmetries. The sur-
face pressures on the wing-body-tail configuration

at a _ 24 ° (fig. 27(h)) indicate that the deflected

flap is ineffective in containing the windward and lee-
ward vortices, which migrate inboard onto the main

wing and subsequently burst. Vortex breakdown ad-

vances farther forward on the windward wing, as indi-

cated by the broader pressure distributions and lower
maximum suction pressure levels in comparison with

the leeward wing. The strakes increase the overall

suction pressure levels inboard of the flap hinge line

on the windward wing relative to the leeward wing

(fig. 27(i)). However, vortex breakdown asymmetry
increases with the strakes on. The effect of vortex

breakdown is apparent in the "_indward wing pres-

sure distributions at x/c = 0.50 to 0.75 (fig. 27(i)).

By contrast, the interaction of the leeward strake vor-

tex with the wing flow field stabilizes the wing vor-

tex. As a result, the suction pressure levels along the
outer portion of the wing arc higher on the leeward

side at all stations except x/c -- 0.30. The inability

of the strakes to reduce the wing vortex breakdown

asymmetry in sideslip limits the stable ClZ increment
at (_ _ 24 °. In addition, the maximum stable value

of Cnz with the strakcs on appears limited by inter-
action of the burst vortex and, consequently, the

lower q wake from the windward wing with the
ccnterline tail. Reduced vertical tail effectiveness

due to wing vortex breakdown effects has been
documented in reference 28.

The strakes increase the directional stability

at Moc = 0.90 (fig. 28(a)) beginning at an angle of

attack of approximately 8°. The stable Cn z incre-
ments are smaller than those obtained at -h.loo = 0.40

(fig. 27(a)), particularly at angles of attack of 20 °

and higher. A comparison of the results ob-
tained at .h./_ = 0.90 and _LE = 0° (fig. 25(a))

and 5LE = 30 ° (fig. 28(a)) shows that the sta-

ble increments in Cnz are larger with the deflected

leading-edge flaps. The stable Cn,z increments due

to the strakes rapidly diminish, and the positive in-

crements to Cyz abruptly increase, at angles of at-

tack greater than 18 ° . These trends are associated
with a decrease in the vertical tail effectiveness. Both

configurations are directionally unstable at angles of

attack greater than 22 °. The strakes also promote
unstable increments to the lateral stability deriva-

tive at Met = 0.90 and angles of attack greater than

approximately 14 °. A comparison with the results
obtained at M_c = 0.90 with 5LE = 0 ° (fig. 25(a))

shows that the unstable CIz increments are smaller
and the lateral instability at higher a's is less severe

with the wing flaps dcflccted.

The wing surface pressures at a _ 12 ° (figs. 28(b)

and (c)) indicate that the strakes increase the overall

suction pressure levels inboard of the flap knee on
the windward wing relative to the leeward wing

between x/c = 0.30 and 0.625. There is no net

effect of the strakes on Ctz at this angle of attack.

The surface pressures in both cases indicate that the
flow on the windward flap upper surface is attached,
whereas a small vortex forms near the leading edge

of the leeward flap. The character of the windward

and leeward wing pressure distributions inboard of
the flap knee is consistent with the development of a

vortex arising from flow separation at or near the
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hingeline. The hinge-linevortexpressuresigna-
ture is manifestedby the suctionpeaksand max-
imumsuctionpressureplateauson the mainwing.
The surfacepressuredistributiontrendsaresimilar
at a _ 16° (figs.28(d)and (e)). A compar'isonof
the datain figures28(d)and(e) indicatesthat the
strakeshaveessentiallyno effecton the windward
wing pressuredistributions.The primaryeffectof
the strakesis manifestedin the leewardwing sur-
facepressures.The_-aporscreenflowvisualization
photographat a _ 16 ° and fl = +5 ° in figure 29(a)
shows that the windward strake vortex is situated

inboard near the fuselage, where its induced effect

on the wing flow field is small. Conversely, the lee-
ward strake vortex is positioned outboard over the

wing, where it has a larger effect on the flow field.

The downwash induced by the leeward strake vor-

tex suppresses the hinge-line vortex pressure signa-

ture at x/c = 0.30. Farther aft, the leeward hinge-
line vortex is smaller with the strakes on. This is

indicated by the outboard displacement of the flow

reattaehment induced by the leeward hinge-line vor-
tex. The induced effect of the strake vortex increases

the hinge-line and leading-edge vortex pressure sig-
natures at x/c = 0.75. The increased vortex pres-

sure signatures along the rear portion of the leeward

wing cause the small unstable increments to ClZ at
this angle of attack. The strake vortex-induced ef-

fect on the leeward wing surface pressures is more

pronounced at ct _ 20 ° (figs. 28(f) and (g)) which

show a large increase in the hinge-line and leading-
edge vortex footprints at x/c = 0.50 to 0.75. The

increased suction pressure levels on the leeward wing
relative to the windward wing promote a larger un-

stable increment to Ctz. The vapor screen photo-

graph at a _ 22 ° and fl _ +5 ° in figure 29(b)
shows a stable leeward strake vortex and the outer

edge of the combined leading-edge and hinge-line

vortices. The mutual proximity of the leeward vor-
tices leads to strong induced flow-field effects. The

windward strake vortex is positioned near the fuse-

lage and bursts upstream of the centcrline tail. The

flow visualization is consistent with the insensitivity
of the windward wing surface pressure data to the

strakes and is in qualitative agreement with the di-

rectional stability decrease in figure 28(a). At a
24 ° (fgs. 28(h) and (i)), the surface pressures with

strakes off are nearly uniform on the windward and

leeward wings at x/c = 0.30 to 0.75. The loss of

the hinge-line vortex and leading-edge vortex pres-

sure signatures along the entire wing suggests that a
strong interaction occurs between the vortical flows

and a rear shock Wave £t the higher angles of attack.

This causes a rapid forward progression of vortex
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breakdown. The strakes have no effect on the wind-

ward wing pressure distributions but reestablished

strong vortex pressure signatures at all measurement

stations on the leeward wing. The increased loading

on the leeward wing resulted in the large unstable ClZ

increment at a _ 24 ° in figure 28(a).

Effect of Mach Number on Longitudinal
Characteristics

Leading-edge flap undejqected. The effect of

the free-stream Mach number on the lift, drag, and

pitching-moment characteristics and the wing up-
per surface static pressure distributions with strakes

both off and on is presented in figures 30 and 31,
respectively. Laser vapor screen flow visualization

results obtained with the strakes on are presented in
figure 32.

With the strakes off, the lift at a given angle of

attack generally increases with increasing Mach num-
ber (fig. 30(@). This trend is apparent up to an an-

gle of attack of approximately 20 °. At higher a's,

lift decreases with Mach number from Moo = 0.40
to 0.80 because of vortex breakdown effects. The

highest lift is developed at Moc = 1.10 through the
range of angle of attack because of the absence of
strong rear shock wave-vortex interactions and vor-

tex breakdown effects. The drag at a given lift is
insensitive to the Maeh number from Moc = 0.40

to 0.95 up to a lift coefficient of approximately 0.9.

At higher lift, the drag increases with Mach num-

ber from Moo = 0.40 to 0.80. Supersonic wave

drag at kl_c = 1.10 promotes the drag increments

at low and moderate lift coefficients. The drag is
least for Mcc = 1.10 with lift coefficients greater

than 0.9. The wing-body-tail configuration is stati-

cally unstable in pitch at Met = 0.40. Increasing the

Maeh number promotes a stable shift in the pitching-
moment curve at zero lift. This effect is more pro-

nounced at M:_c = 0.95 and 1.10, where the model

is neutrally stable or exhibits longitudinal stability
over a wide range of lift coefficients.

The wing pressure distributions at a _ 12 °, 16°,

20 °, and 22 ° with the strakes off (figs. 30(b)-(e))
show a large decrease in the leading-edge vortex

pressure signature and a broadening of the surface
pressures underneath the vortical flow as the Mach

number increases. These trends are consistent with

a weaker, flatter vortex at the higher Mach num-

bers (refs. 16, 19, 25, 26, and 29). At a _ 20 °

and 22 ° (figs. 30(d) and (e)), the character of the

wing pressure distributions at x/c = 0.625 and 0.75

is similar through the range of Mach number, despite
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the dominance of vortex breakdown effects at the

subsonic speeds and the stabilization of the vortex

flow at the transonic speeds. This indicates that the

pressure signatures of the burst, expanded wing vor-

tex and stable, elliptically shaped vortical flow are
similar. The vacuum pressure limit will also affect

the character of the pressure distributions, partic-

ularly at the higher Mach numbers. The vacuum

pressure coefficient Cp,v provides an upper bound
for the vortex-induced suction pressure levels by as-

suming that the local static pressure on the wing

upper surface corresponds to the vacuum pressure

(p = 0 lb/ft2):

Cp,v - -P_ -poc _ -2
1 2 _/M L (1)q_ _ 7Poc M_c

Reference 30 applied Cp,v as a means of estimat-
ing the attainable leading-edge thrust for wings
at subsonic and supersonic speeds. The value

of Cp,v at various Mach numbers is denoted in

figures 30(b)-(e). At the supersonic free-stream
condition (M_ = 1.10), the experimental surface

pressures may approach a limiting value of about

90 percent of vacuum pressure. Similar maximum

suction pressure levels were obtained on delta wings
at supersonic speeds in reference 31. The increased

lift at the higher Mach numbers is caused by an

increase in the positive pressures on the compres-

sion side of the wing (ref. 25) and an increase in
the attached flow and vortex flow suction pressures

along the inboard portion of the wing upper sur-
face. Although the peak vortex-induced suction pres-

sures are generally lower at the higher Mach num-

bers, the maximum suction pressure levels extend

across a greater spanwise extent of the wing. The
surface pressure signature of the burst wing vortex

at a _ 22 ° and Moc = 0.40 (fig. 30(e)) is broad

and encompasses a large portion of the local wing
semispan. The suction pressure levels underneath

the burst vortex exhibit a large decrease due to in-

creasing Mach number from 5'/oc = 0.40 to 0.80. The
decrease in the overall suction pressure levels causes

the lift decrease (fig. 30(a)) within this range of Mach
number. The surface pressures show a more signif-

icant decrease in the vortex-induced loading along

the front part of the wing relative to the rear wing

region as the Mach number increases. This effect con-
tributes to an aft shift in the center of pressure and,

consequently, the stable shift in the pitching-moment

curves.

With the strakes on, the lift is less sensitive to
the Mach number from Moc = 0.40 to 0.80 and an-

gles of attack up to approximately 20 ° (fig. 31(a))
compared with the results obtained with the strakes

off (fig. 30(a)). There is a marked increase in lift
within this range of angle of attack at higher Mach

numbers, however. At a > 20 ° the highest lift oc-

curs at M_ = 0.40. Vortex breakdown was not ob-

served at any Mach number. The decrease in lift
due to increasing Mach number is due to the weak-

ened vortices (refs. 16, 25, 26, and 29) and a vac-
uum pressure limit (refs. 30 and 31). At moder-

ate and high lift coefficients, the drag generally in-
creases with the Mach number from M_ = 0.40

to 0.95. The drag at M_ = 0.40 is lowest through

the range of lift coefficient. Increasing the Mach
number beyond 0.60 promotes a stable shift in the

pitching-moment curve. At M_c = 1.10, the configu-
ration with strakes on is neutrally stable up to a lift

coefficient of approximately 0.9.

Increasing the Mach number decreases the max-
imum suction pressure levels induced by the wing

vortex and broadens the vortex pressure signature

with the strakes on (figs. 31(b)-(e)). These effects

are consistent with the vapor screen flow visualiza-

tion photographs in figure 32 which compare the
model cross-flow patterns at Mcc = 0.60 and 1.10

and a _ 20 °. The wing vortex has an approximately

circular cross section at M_ = 0.60 (fig. 32(a)).

At Moc = 1.10 (fig. 32(b)), the wing vortex ex-
hibits a flattened, lobe-shaped cross section and is

closer to the surface. Increasing the Mach number

promotes an inboard and upward displacement of the

strake vortices; this is an indicator of the reduced vor-

tex strengths and the diminished flow induced by the

strake and wing vortices on each other. The Mach
number effect on the maximum suction pressure lev-

els underneath the wing vortex is observed over a

smaller spanwise extent of the wing with the strakes

on (figs. 31(b)-(e)). This is due to the smaller wing
vortex in the presence of the strake vortex-induced

flow field. As a consequence, the lift is less sensi-

tive to increasing Mach number from M_c = 0.40

to 0.80 (fig. 31(a)). The surface pressures at c_ _ 24 °

(fig. 31(e)) show that the strake vortex pressure foot-

print apparent at subsonic speeds is absent at tran-
sonic speeds; this is attributed to the inboard and up-

ward displacement of the strake vortex at the higher
Mach numbers, which was shown previously in the

flow visualization photographs in figure 32.

Leading-edge flap deflected 30 °. The Mach
number effect on the lift and pitching-moment char-

acteristics with 6LE = 30° is similar to the effect dis-

cussed in the previous section with the undeflected

flap. This effect is shown in figures 33 and 34 for

configurations with strakes off and on, respectively.

The onset of wing vortex breakdown (strakes off) is

delayed to a higher angle of attack because of the
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deflectedflap.Asaresult,thelift decreasedueto in-
creasingMachnumberthat wasnotedpreviouslyin
figure 30(a) with _Sf.E = 0° does not occur until angles

of attack greater than 22 ° (fig. 33(a)). In contrast

with tile results obtained with aLE = 0 ° (figs. 30(a)
and 31(a)), the drag increases with increasing Mach
number through most of the range of lift coefficient.

This effect is apparent with the strakes Off (fig. 33(a))
and strakes on (fig. 34(a)). The surface pressure dis-
tributions in figures 3a(u) (e) and 34(b) (e) show
that increasing the Mach number decreases the suc-

tion pressure levels on the forward-facing surface of

the deflected flap and, consequently, the aerodynamic

thrust component produced by the flap. In addition,

the development of a strong hinge-line vortex situ-
ated over the main wing at the higher Mach num-

bers increases the suction pressure levels inboard of

the flap knee and contributes to tile drag increase.

Effect of Mach Number on

Lateral-Directional Characteristics

Leading-edge flap unde_ected. The lateral-

directional stability derivatives obtained at
_:r_c = 0.40 and 0.90 with the strakcs both off and

on are presented in figures 35 and 36, respectively.
The overall effect of increasing Mach number is small

with tile Strakes off (fig. 35). Tills effeCt is because

of tile relatively miht vortex breakdown asymme-

tries in sideslip and tile absence of strong, adverse
flow-field interactions between the burst vortices and

tile centcrline tail. Increasing the Maeh number

from 0.40 to 0.90 promotes snmll positive Cno incre-
ments at angles of attack from 0° to 16 °. The cor-

responding negative increments to Cyz indicate that
the directional stability increase is due to increased

loading on the centerline vertical tail. The higher tail

load contributes to the stable CIZ increments within

the same range of angle of attack. The unstable Cnj

increments and positive C}) increments at c_ _ 18 °
and 20 ° coincide with reduced levels of lateral sta-

bility; this suggests that the forward progression of
the windward wing vortex breakdown reduces the
dynamic pressure at the tail.

The lateral-directional stability characteristics
with the strakes on are sensitive to tile Mach num-

ber (fig. 36). At angles of attack greater than 12 °, in-

creasing the Mach number from 0.40 to 0.90 promotes

large unstable increments to Cn z and CIO. The strake
vortices are weaker at tile higher Mach number. As

a result, the strake vortex-induced effect on the fore-

body and the corresponding stable increments to tile

directional stability diminish at Aim = 0.90. The vor-

tex breakdown asymmetry in sideslip is more severe
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at the transonic speeds. The progression of strake

and wing vortex breakdown on the windward side is
more rapid at Mac = 0.90 due to the interaction of
the vortices with a rear shock wave. The effective in-

crease in the leading-edge sweep on the leeward side
provides a three-dimensional relief which stabilizes

the vortical flows and moderates tile shock effect.

Tile lower q wake associated with tile burst wind-

ward st rake and wing vortices blankets the center-

line tail which leads to the directional instability, at
the higher angles of attack.

Leading-edge flap dejffected 30 °. The Mach

number effect on the lateral-directional stability

characteristics with 5LE ---- 30° is shown in figures 37

and 38. The directional stability trends with the

strakes off (fig. 37) and strakes on (fig. 38) are simi-
lar to the results obtained with the undeflected flap

(figs. 35 and 36). With the strakes off (fig. 37), in-

creasing tile Mach number from 0.40 to 0.90 promotes

unstable increments to the lateral stability at angles
of attack from approximately 10 ° to 20 °. "With the

strakes on (fig. 38), the unstable Clo increments duc
to increasing Mach number are larger with the de-

flected flap. These results are due to the develop-
ment of the flap hinge-line vortex which increases the

asymmetries in the strakc-wing flow-field interactions
in sideslip.

Summarization of Results

A wind tunnel experiment was conducted in the

7- l)y 10-Foot Transonic Tunnel at DTRC to deter-

mine the effects of chlne-like forebody strakes and
the Mach number on the longitudina! and lateral-

directional characteristics of a gencralized fighter

configuration with a 55 ° cropped delta wing. The

model six-component forces and moments, wing up-
per surface static pressure distributions, and laser va-
por screen flow visualizations were obtained at free-

stream Mach numbers from 0.40 to 1.10; Reynolds

numbers based on the wing mean aerodynamic chord
of 1.60 x 106 to 2.59 × 106; angles of attack from 0° to

a maximum of 28°; and angles of sideslip of 0_, +5 °,
and -5 ° . The model was tested with and without

the forebody strakes, with a centerline vertical tail,

and with a constant-chord wing leading-edge flap
undeflected and deflected 30 °.

A favorable interaction occurred between tile

strakc and wing flow fields that stabilized the wing
vortex at subsonic and transonic speeds and at zero
angle of sideslip, increased the lift at moderate and

high angles of attack, and reduced the drag at mod-
erate and high lift levels. The favorable effects on the

lift and drag diminished with increasing Mach num-

ber due to the weaker strake and wing vortices and a
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corresponding decrease in the flow that the vortices

induced on each other. Adding the strakes resulted in

a large unstable shift in the pitching-moment curve

duc to the increased planform area and the strakc

lift acting ahead of the moment reference center. The
strake effect on the character of tile pitching-moment

curve was insensitive to increasing Mach number.

The strake vortex induced favorable spanw_se flow

gradients on the wing that were similar to those oc-

curring naturally on more highly swept wings. This
three-dimensional relief effect prevented the devel-

opment of a strong rear shock wave, delayed wing
vortex breakdown, and eliminated the model buffet-

ing due to the vortex--shock interaction that was ob-

served with strakes off at M_c = 0.80 and 0.95. Wing
vortex breakdown did not occur with the strakes off

at -bloc = 1.10, and the strake effect on the lift and

drag was correspondingly small.

Deflecting the wing leading-edge flaps delayed the

onset of vortex breakdown to a higher angle of attack.

The strake effect on the lift and drag was accordingly

reduced because of the improved efficiency of the
isolated wing.

Flow separation occurred near the knee of the

deflected flap at the higher subsonic and transonic

speeds. The resulting hinge-line vortex was a domi-

nant feature of the wing flow field and contributed to
the increased drag at the higher Mach numbers. The

character of the hinge-line vortex was unaffected by
the strakes.

The direct suction effect induced by the wind-
ward strake vortex on the forebody resulted in a

large increase in the directional stability at sub-

sonic speeds. This effect diminished at the transonic
speeds because of the weaker strake vortex.

With the wing leading-edge flaps undeflected, the

strakes increased the vortex breakdown asymmetry

in sideslip and decreased the lateral stability at the

subsonic speeds and higher angles of attack. In com-
bination with the deflected flaps, however, the strakes

increased the lateral stability through the test range

of angle of attack. The test results indicated that

the strakes promoted stable increments to the lateral

stability when the wing vortex was confined to the
leading edge, and its size and strength were reduced

by deflecting the leading-edge flaps. The onset of
windward vortex breakdown and the increased inter-

action of the leeward strake and wing vortices at the

higher angles of attack limited the magnitude of the

stable Cl;_ increments.

The strakes increased the vortex breakdown

asymmetry in sideslip and promoted lateral instabil-

ity at the transonic speeds. The induced effect of the

windward strake vortex on the wing flow was small.

The flow about the windward wing was dominated

by vortex breakdown and vortex shock interactions.

In contrast, the leeward wing was characterized by

stable strake and wing vortices and the absence of
vortex-rear shock interaction. The burst windward

vortices blanketed the eenterline vertical tail which

promoted directional instability at the higher an-

gles of attack. The adverse effects of the strakes on
the lateral-directional characteristics at the transonic

speeds were reduced by wing flap deflection.

The Mach number effect on the longitudinal char-
acteristics was similar both with and without the

forebody strakes. The lift at a given angle of at-

tack increased with increasing Maeh number pro-
vided that the effects of wing vortex breakdown were

small. At higher angles of attack where vortex break-

down dominated the flow field about the wing-body-

tail configuration, the lift decreased with increasing
Maeh number. A similar trend occurred with the

strakes on due to the diminished vortex strengths and
a vacuum pressure limit at the higher Mach numbers.

The drag was sensitive to increasing Mach number

when the wing leading-edge flaps were deflected. The

drag increased with Maeh number due to a reduction

in the aerodynamic thrust component generated by
the flap and the development of a large-scale vortex

on the main wing arising from hinge-line flow separa-

tion. The center of pressure moved aft with increas-

ing Mach number which promoted a stable shift in

the pitching-moment curve.

The effect of increasing Mach number on the

lateral-directional stability characteristics of the
wing-body-tail configuration was small. At the sub-

sonic speeds, the difference in the effective leading-

edge sweep angle of the windward and leeward wings
was insufficient to promote a large asymmetry in

the vortex breakdown positions. The vortex break-

down asymmetry was also limited at the transonic

speeds by the development of a rear shock wave on

the windward and leeward wings.

The lateral-directional stability characteristics
were more sensitive to the Mach number with the

forebody strakes on. The difference in the effective

sweep angles of the windward and leeward wings was

greater because of the limited "communication" be-

tween the strake and wing vortices on the windward

side and the stronger mutual induced effects of the

strake and wing vortices on the leeward side. This

effect increased the vortex breakdown asymmetry at
the subsonic speeds. The resultant vortex break-

down asymmetry in sideslip was more severe at the

transonic speed due to vortex shock interaction.
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Concluding Remarks

Thepresentwind tunnelexperimentestablished
a databaseon the overalllongitudinalandlateral-
directionalaerodynamiccharacteristicsof ageneral-
izedfighterconfigurationwith a 55° croppeddelta
wing at subsonicand transonicspeeds. Empha-
siswasplacedondeterminingthe effectsof chine-
like forebodystrakesandthe Mach number on the

model six-component forces and moments, wing up-

per surface static pressures, and off-body flow-field

behavior. Key fluid mechanics phenomena at sub-

sonic and transonic manuevering conditions were

identified. These phenomena included coexisting
and interacting vortex flows and shock waves, vortex

breakdown, vortex flow interactions with a center-

line vertical tail, and separation-induced vortical

flows from the hinge line of a deflected wing leading-
edge flap. The flow mechanisms were correlated with

the longitudinal and lateral-directional aerodynamic
data trends.

The observed benefits of the forebody strakes at

the subsonic speeds included stabilization of the wing
vortices at zero sideslip, increased lift at the mod-

erate and high angles of attack, reduced drag at

moderate-to-high lift, increased directional stability

up to the maximum test angle of attack, and in-

creased lateral stability through a more limited range
of angle of attack. The disadvantages included in-

creased longitudinal instability and reduced lateral
stability at the higher angles of attack because of an

increase in the wing vortex breakdown asymmetry in

sideslip. The strakes increased the lateral stability

through the test range of angle of attack when the

wing leading-edge flaps were deflected.

The strake benefits at the transonic speeds were

increased lift, reduced drag, reduced wing vortex-
shock wave interactions, elimination of model buffet-

ing in pitch, and increased directional stability up

to moderate angles of attack. The disadvantages

consisted of increased vortex breakdown asymmetry
in sideslip, adverse vortex flow interaction with the

centerline vertical tail, and lateral-directional insta-

bilities at the higher angles of attack. The adverse
effects of the strakes on the lateral-directional stabil-

ity were reduced when the wing flaps were deflected.

The principal effects on the model flow field due
to increasing the Mach number were reduced strake-

wing vortex interactions, development of shock waves

coexisting with vortex flows, flow separation from the

hinge line of the deflected wing flap, and increased

vortex breakdown asymmetry in sideslip (strakes on).

Increasing the Mach number reduced the vortex pres-

sure signatures; promoted model buffeting (strakes
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off); reduced the longitudinal instability; reduced

the favorable strake effects on lift, drag, and di-
rectional stability; and promoted lateral-directional

instabilities at the higher angles of attack (strakes
on).

NASA Langley Research Center

Hampton, VA 23681-0001

September 29, 1992
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Table I. Model Geometry

Wing aspect ratio, AR, b2/Sref .................. 1.81

Reference wing span, b, in ..................... 24.94

Wing centerline chord, c, in .................... 22.95

Wing tip chord, ct, in. 4.68

Wing mean aerodynamic chord, _, in ................ 15.83

Vertical tail mean aerodynamic chord, cT, in ............. 5.61

Model length, l, in. 42.00

Leading-edge flap exposed area (2 flaps), Sflap, in 2 ......... 41.07

Reference wing area, Sref, in 2 .................. 344.55

Forebody strakc exposed area (2 strakes), Sstrake , in 2 ........ 22.94

Vertical tail exposed area, Stall , in 2 ................ 30.34

Wing leading-edge sweep angle, ALE , deg ............. 55.0

Wing trailing-edge sweep angle, ATE , deg ............. -2.1

Wing taper ratio, A, ct/c ...................... 0.2

Table II. Wind Tunnel Test Conditions
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0.40
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0.80

0.90

0.95
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lb/ft 2

982

900

89O

800

775

895

To,

oF

69

71

8O

79

73

77

100

178

264

268

275

355

Re_
1.60 x 106

1.99 x 106

2.31 x 106

2.18 x 106

2.19 x 106

2.59 x 106
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ORIGINAL F;AGE

BLACK AND WHITE PHOTOGRAPH

_2

Figure 1. Flow visualization of forebody and wing vortex interaction (Langley 16- by 24-Inch \Vater "lSmncl).
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Figure 2. Geometry details of wind tunnel model. Linear dimensions are in inches.
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LE flap hinge line

BL 12.47

Figure 3. Streamwise section cuts of 55 ° cropped delta wing.

WRP typical -_
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Roo!

Tip

Figure 4. Section cuts normal to leading-edge flap hinge line with flap deflected 30%
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Section C-C
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WL0.00--o - ' ' _ - _ WL0.30
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Nose section break Forebody break FS 15.00 IFS 16. 14
i

FS 16.00

Figure 5. Geometry details of chine-like forebody strakes. Linear dimensions are in inches.
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0.7

Figure 6. Static pressure orifice locations on upper surface of right wing.
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OR:!GINAL FAGT-.

BLACK AND ¢/HiTE pHOTOGRA'PH

(a) Light sheet optics in test section window.

Figure 7. Setup of laser light sheet optics in 7- by 10-Foot Transonic Tunnel at DTRC.
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Laser head

Observation window _

Light sheet

(b) Cross section of wind tunncl With laser light sheet setup shown.

Figure 7. Concluded.
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Figure 8.
view.

(a) Laser vapor screen pattern.

Laser vapor screen flow visualization at Moc = 1.10, _ _ 20°, and z/c = 0.75. Left three-quarter rear

Ol.,"d,GINAL FAGE
ql _K AN_ WH#TE '_ r'TN_,- .-4,,. _,v,_APH
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(a) Forebody strakes off; rear view.

(b) Forebody strakes on; rear view.

Figure 9. IVlodel installed in test section of 7- by 10-Foot Transonic _'unnel at DTRC.

,.,_,,_ I b_,.-.,LgAGE

BLACK AND WH!TE p.L-IgTOCRApH
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(c) Forebody strakes off; top view.

m.

E

3O

(d) Forebody strakes on; top view.

Figurc 9. Concluded.
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(a) Lift, drag, and pitching moment.

Figure 10. Effect of forebody strakes on longitudinal characteristics at Moc = 0.40 with 5LE = 0 °.
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Figure 11. Concluded.
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(a) Forebody strakes off.

Figure 17. Wing surface flow and off-surface flow behavior at Moc = 0.95 and c_ _ 20 ° with 5LE = 0 ° and

vertical tail off. (Oil flow photographs from ref. 6.)
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(a) M_ = 0.60.

Figure 32. L_ser vapor screen flow visualization results. Strakes on; a _ 20°; 5LE = 0°; X/c = 0.75; right

three-quarter rear view,
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(b) ]_f_ = 1.10,

Figure 32. Concluded.
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